AI Terminal

MODULE: AI_ANALYST
Interactive Q&A, Risk Assessment, Summarization
MODULE: DATA_EXTRACT
Excel Export, XBRL Parsing, Table Digitization
MODULE: PEER_COMP
Sector Benchmarking, Sentiment Analysis
SYSTEM ACCESS LOCKED
Authenticate / Register Log In

Artifex Mundi S.A.

Director's Dealing Jun 15, 2018

5508_rns_2018-06-15_9a23641f-ee05-4ca3-bfec-0df38e54b950.pdf

Director's Dealing

Open in Viewer

Opens in native device viewer

Warszawa, dnia 14 czerwca 2018 roku

Przemysław Danowski

Komisja Nadzoru Finansowego ul. Powstańców Warszawy 1 00-950 Warszawa

Informacje przekazane KNF na podstawie art. 19 ust. 1 Rozporządzenia Wykonawczego Komisji (UE) nr 596/2014 z dnia 16 kwietnia 2014 r.

Lp. ZAKRES INFORMACJI POLA DO UZUPEŁNIENIA
$\mathbf{1}$ Dane osoby pełniącej obowiązki zarządcze/osoby blisko z nią związanej
a) Imię i nazwisko Przemysław Danowski
$\overline{2}$ Powód powiadomienia
b) Stanowisko/status Transakcje
Przemysława
zawarte
przez
Danowskiego - Członka Rady Nadzorczej
$\mathbf{c}$ Pierwotne powiadomienie/zmiana Zawiadomienie pierwotne
3 Dane emitenta, uczestnika rynku uprawnień do emisji, platformy edukacyjnej,
prowadzącego aukcje lub monitorującego
a) Nazwa Artifex Mundi S.A.
b) LEI 259400N95YGU76EEYD38
4 Szczegółowe informacje dotyczące transakcji: rubrykę tę należy wypełnić dla (i)
każdego rodzaju instrumentu; (ii) każdego rodzaju transakcji; (iii) każdej daty; oraz
(iv) każdego miejsca, w którym przeprowadzono transakcje
a) Opis instrumentu finansowego,
rodzaj instrumentu
Kod identyfikacyjny
Akcje zwykłe na okaziciela
b) Rodzaj transakcji Nabycie.
Transakcja
nie
wykonywaniem opcji na akcje
jest
związana
W
c)
7
d)
Cena i wolumen Cena Wolumen
6,80 PLN 100
6,84 PLN 1170

$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

6,84 PLN 1200
6,86 PLN 699
6,86 PLN 1200
$\hat{\mathcal{L}}$ 7,00 PLN 250
7,00 PLN 500
7,00 PLN 250
7,00 PLN 65
Informacje zbiorcze Łączny wolumen: 5.434 akcje
e) - Łączny wolumen Cena: 6,88 PLN
$-$ Cena
f) Data transakcji 2018-06-14
g) Miejsce transakcji XWAR - GPW rynek akcji

$\label{eq:2.1} \mathcal{L} = \mathcal{L} \left( \mathcal{L} \right) \otimes \mathcal{L} \left( \mathcal{L} \right)$

$\label{eq:1} \mathcal{L}{\mathcal{A}}(\mathbf{x}) = \mathcal{L}{\mathcal{A}}(\mathbf{x}) = \mathcal{L}_{\mathcal{A}}(\mathbf{x})$

$\label{eq:1.1} \begin{array}{ccccc} \alpha & & & & \alpha & \ & \ddots & & & \alpha \end{array}$

$\frac{1}{\lambda}$

Talk to a Data Expert

Have a question? We'll get back to you promptly.